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Frequency and severity of droughts were projected to increase in many regions. However, their effects of
temporal dynamics on the terrestrial carbon cycle remain uncertain, and hence deserve further inves-
tigation. In this paper, the droughts that occurred in China during 2001e2010 were identified by using
the standardized precipitation index (SPI). Standardized anomaly index (SAI), which has been widely
employed in reflecting precipitation, was extended to evaluate the anomalies of net primary productivity
(NPP). In addition, influences of the droughts on vegetation were explored by examining the temporal
dynamics of SAIeNPP along with area-weighted drought intensity at different time scales (1, 3, 6, 9 and
12 months). Year-to-year variability of NPP with several factors, including droughts, NDVI, radiation and
temperature, was analyzed as well.

Consequently, the droughts in the years 2001, 2006 and 2009 were well reconstructed. This indicates
that SPI could be applied to the monitoring of the droughts in China during the past decade (2001e2010)
effectively. Moreover, strongest correlations between droughts and NPP anomalies were found during or
after the drought intensities reached their peak values. In addition, some droughts substantially reduced
the countrywide NPP, whereas the others did not. These phenomena can be explained by the regional
diversities of drought intensity, drought duration, areal extents of the droughts, as well as the cumulative
and lag responses of vegetation to the precipitation deficits. Besides the drought conditions, normalized
difference vegetation index (NDVI), radiation and temperature also contribute to the interannual vari-
ability of NPP.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

According to the inventory-based analysis (Goodale et al., 2002)
and the findings of global carbon cycle modeling (Fan et al., 1998;
Peylin et al., 2002), northern terrestrial ecosystems are functioning
as a large carbon sink. The magnitude, distribution and causes of
the carbon sink remain unclear. However, Recent studies argued
that the northern terrestrial ecosystem takes up less carbon than
thought before (Stephens et al., 2007), and that the carbon sink is
weakening (Fung et al., 2005; Canadell et al., 2007). Furthermore,
this natural ecosystem might be transformed from a carbon sink to
a carbon source owing to some disturbances (Ciais et al., 2005; Kurz
et al., 2008). Accordingly, understanding the responses of the
terrestrial ecosystem to various ecological disturbances is crucial
for elucidating the effects of climate change on carbon cycling and
other ecosystem processes at regional to global scale (Kurz et al.,
2008; Running, 2008).
x: þ86 20 84115833.
il.sysu.edu.cn (X. Li).

All rights reserved.
An ecological disturbance is defined as a phenomenon of sus-
tained disruption of ecosystem structure and function (Pickett and
White, 1986). There are many kinds of disturbances, including
physical disturbance, biogenic disturbance and anthropogenic
disturbance (Potter et al., 2003). The effects of major disturbances
such as fires, deforestation and urbanization on the terrestrial
carbon cycle have been studied extensively (Houghton and
Goodale, 2004; Xu et al., 2007; van der Werf et al., 2010).
However, the influences of another kind of disturbance, which are
frequently less intense but more extensive, such as droughts, are
not well understood. Furthermore, a trend of dryness was inferred
from the global climate models under the conditions of rising
greenhouse gases concentrations (Gregory et al., 1997; Burke et al.,
2006). Frequency and intensity of droughts were supposed to
increase in many regions in the 21st century (IPCC, 2007). Although
the severity of droughts has been investigated extensively, their
subsequent influences on terrestrial carbon cycle are not well
explored (Zeng et al., 2004).

Numerous issues concerning the consequences of droughts
on terrestrial biosphere need to be addressed in future studies.
In this study, we focus specifically on how droughts affect net
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primary productivity (NPP) of the landscapes. NPP pertains to
the production of organic compounds from atmospheric or
aquatic carbon dioxide (CO2), principally through the process of
photosynthesis (photosynthesis minus autotrophic respiration).
As the foundation of energy flow and nutrient cycle for organ-
isms, NPP plays an important role in the global carbon balance,
as well as in climate change. In addition, the carbon flux
between the terrestrial biosphere and atmosphere such as NPP is
primarily dominated by solar radiation, precipitation and
temperature, ambient CO2 concentration, land cover, and other
local environmental factors (Cramer et al., 1999). Thus, it is
a difficult task to distinguish the contributions of these factors to
the variability of NPP.

Europe-wide reduction in primary productivity, which was
caused by heat and droughts in 2003, was investigated at a conti-
nental scale (Ciais et al., 2005). Most recent findings show that
some of the large-scale droughts reduced global NPP accompanied
with decreased NPP in the Southern Hemisphere and increased
NPP in the Northern Hemisphere in the period 2000e2009 (Zhao
and Running, 2010). At a local to regional scale, Xiao et al. (2009)
examined how droughts affected the terrestrial carbon dynamics
by using the Palmer drought severity index (PDSI) and Terrestrial
Ecosystem Model (TEM). They concluded that most of the drought
events occurred in China during the twentieth century reduced the
NPP and net ecosystem productivity (NEP) in large parts of the
drought-affected areas. Besides drought intensity, timing of
droughts is crucial to the carbon uptake of terrestrial ecosystems as
well. Arnone et al. (2008) reported a sustained decrease of
ecosystem CO2 uptake in both the anomalously warming year with
a drought and the following years by performing a four-year study.
Standardized precipitation index (SPI), one of the meteorological-
drought indices based on precipitation, was utilized to quantify
the droughts in Colorado at multiple time scales effectively (McKee
et al., 1993). Ji and Peters (2003) assessed the vegetation responses
to the droughts in the Northern Great Plains in the U.S. by using SPI
and normalized difference vegetation index (NDVI). They found
that the three months SPI (SPI-3) had the maximal correlations
with the NDVI. However, Fernandes and Heinemann (2011)
concluded that the SPI at the time scale of 12 months (SPI-12)
exhibited the best performance when estimating the variability of
upland rice adjusted yield in six different regions in Brazil.

The severity of droughts is often characterized by drought
intensity and drought duration (Liu and Juárez, 2001). Most of the
previous studies have quantified the impacts of drought intensity
on terrestrial NPP. However, the potential delayed or lagged
effects of droughts have not beenwell understood because of their
complexities. Especially, China has witnessed numerous droughts
at different time scales in past decades (Wu et al., 2011). These
droughts have exerted an important influence on the carbon cycle
at a countrywide scale (Xiao et al., 2009). In this paper, several
droughts that occurred in China during the past decade (2001e
2010) were identified by using SPI as the indicator. The impacts
of the intensity and timing of these droughts on terrestrial NPP
were investigated by using statistical analysis, such as correlation
analysis. Year-to-year variability between NPP and several factors
was analyzed as well. In brief, this paper aims to assess the
impacts of the intensity and temporal variability of droughts on
NPP in China.

2. Data and preprocessing

2.1. Measurement-based biomass and NPP data

In our study, forest biomass/NPP data which were used for
calibrating the Carnegie-Ames-Stanford approach (CASA) model
were derived from Luo’s (1996) study. These data were compiled
from the national forest inventories conducted by the Chinese
Ministry of Forestry during the period 1989e1993, as well as
some other published literatures from intensively studied and
well-documented field sites. These data provide some useful
information, such as site name, latitude, longitude, elevation,
biomass and NPP estimations for most of the plant components
(Luo, 1996). Biomass and NPP data for grassland and shrubland
were obtained from several published works (Jin et al., 2007; Ni,
2004; Togtohyn and Ojima, 1996; Wang et al., 2011a,b; Yu et al.,
2000). These data were selected because: (1) a series of
measurements was made at intervals during the growing season
within one year or more; (2) data on aboveground and below-
ground biomass are available. Consequently, the corresponding
NPP were calculated based on the maximum and minimum
biomass following the method of Ni (2004). Since most of the
measurement-based records on biomass and NPP were provided
in the unit of dry matter (DM), a conversion was performed from
DM to carbon content (g C m�2$year�1). This was implemented
by applying a conversion factor of 0.5 for woody biomass
(Myneni et al., 2001), and 0.45 for grassland and shrubland (Fang
et al., 2007).

2.2. Remote sensing data

The NDVI images are required by the CASA model when
calculating NPP. These data were from the MODIS monthly NDVI
product (MOD13) with a spatial resolution of 1 km2. This was
provided by the EOS Data Gateway at the Land Processes
Distributed Archive Center (http://lpdaac.usgs.gov/main.asp). The
images were then aggregated to geographic grid cells at a resolu-
tion of 0.01 � 0.01� from their original sinusoidal projection by
using the MODIS reprojection tool. In addition, Vegetation Health
Index (VHI), which was used for validating the NPP anomalies,
was obtained from the Center for Satellite Applications and
Research (STAR). These data were developed based on the radi-
ance observed by the Advanced Very High Resolution Radiometer
(AVHRR).

2.3. Climate datasets from NMIC/CMA

The climate dataset employed in this work, which covers the
period from 1980 to 2010, includes mean temperature, precipita-
tion and solar radiation at amonthly scale across China. Specifically,
historical records of temperature and precipitation were derived
from 752 climatological stations. The radiation data were compiled
from 122 solar radiation observation stations. All these data were
provided by the Chinese National Metrological Information Center/
China Meteorological Administration (NMIC/CMA). In order to
assure the continuity and consistency, these data were validated by
screening and eliminating the suspicious and missing records. In
addition, the interpolation technique of kriging (Zhu et al., 2006)
was applied to mapping of the spatial distribution of each climate
factor from the station-based information at a resolution of
0.01 � 0.01�.

2.4. Vegetation map and soil texture data

Spatial distributions of various vegetation types in China were
generated from a vegetationmap at a scale of 1:1,000,000 (Editorial
Board of Vegetation Map of China, 2001). For driving the CASA
model properly, original categories of this vegetation map were
reclassified into several typical vegetation types (Zhu et al., 2006).
Following Potter et al. (1993), the soil rooting depth for various
forests were set to 2.0 m, and the others were assigned a rooting

http://lpdaac.usgs.gov/main.asp


Table 1
Drought classification by SPI values.

SPI value Drought category

2.00 or more Extremely wet
1.50 to 1.99 Severely wet
1.00 to 1.49 Moderately wet
0 to 0.99 Mildly wet
0 to �0.99 Mild drought
�1.00 to �1.49 Moderate drought
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depth of 1.0 m. In addition, the information on the soil texture is
important in determining the soil water content, and hence NPP.
The harmonized world soil database (HWSD), which was produced
by the Food and Agriculture Organization of the United Nations
(Freddy et al., 2008), provides some soil parameters including soil
texture classes and the associated particle sizes. The soil data in this
study were compiled from the subset of HWSD at a scale of
1:1,000,000.
�1.50 to �1.99 Severe drought
�2 or less Extreme drought
2.5. Land use/cover data

During the past three decades, urban lands in China have
increasingly expanded and encroached upon lots of arable lands
since the economic reform in 1978 (Li, 1998; Weng, 2002). The land
use/cover dataset for 2006 in China was developed based on the
updating survey by each province in China. Urban area in Chinawas
extracted from this land use/cover dataset by using Geographic
Information System (GIS). However, the reclassification of the land
use data toward the natural vegetation does not suit the parameters
and structures of the CASA model. Thus, the vegetation map above
was used to obtain the distributions of original vegetation in this
country instead.
3. Methods

3.1. SPI as the indicator of droughts

Extreme weather and climate events such as droughts have
received increasing attentions in the past few years. Researchers
have developed many methods to monitor the meteorological and
the other types of droughts (Palmer and Bureau, 1965; McKee et al.,
1993; Tsakiris and Vangelis, 2005). In most cases, droughts could be
quantified effectively via various drought indices such as SPI and
PDSI. SPI was originally developed and applied to the monitoring of
the status of droughts at multiple time scales in Colorado (McKee
et al., 1993). Many studies suggested that SPI was suitable for
quantifying most of the drought events, including meteorological,
hydrological and agricultural droughts (Lloyd Hughes and
Saunders, 2002).

The SPI is calculated by fitting a probability density function to
the frequency distribution of some historical precipitation, which is
summed over a specific time scale for each location. The probability
density function is then transformed into a standardized normal
distribution with a mean of zero and variance of one. In this study,
time series of monthly precipitation was modeled by using the
gamma distribution. The probability density function of this
distribution is defined as (Lloyd Hughes and Saunders, 2002):

g
�
x
� ¼ 1

baG
�
a
�Xa�1e�x=b when x > 0 (1)

where a is a shape parameter, b is a scale parameter, and x is the
amount of precipitation. GðaÞ is the gamma function, which is
defined as

G
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The cumulative probability G(x) of an observed amount of precip-
itation is given as:

G
�
x
� ¼

Zx
0

gðxÞdx ¼ 1bbbaG�ba�
Zx
0

xbae� x=bbdx (6)

The gamma distribution is undefined as x ¼ 0, and
q ¼ P(x ¼ 0) > 0, where P(x ¼ 0) is the probability of zero precip-
itation. Thus, the cumulative probability becomes:

HðxÞ ¼ qþ ð1� qÞGðxÞ (7)

The cumulative probability distribution H(x) is then trans-
formed into standard normal distribution to yield the SPI by using
the methods of Abramowitz and Stegun (1964):
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�
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and

c0 ¼ 2:515517; c1 ¼ 0:802853; c2 ¼ 0:010328;
d1 ¼ 1:432788; d2 ¼ 0:189269; d3 ¼ 0:001308 (12)

A clear and detailed description to calculate the SPI can be found
in Lloyd Hughes and Saunders (2002). While using SPI as an indi-
cator, we supposed that a drought occurs when the SPI falls below
zero (McKee et al., 1993). In addition, a positive SPI often indicates
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more precipitation than the median value, whereas negative values
indicate lesser precipitation. As shown in Table 1, the SPI drought
classification proposed by Lloyd Hughes and Saunders (2002) was
used to measure the severity of droughts.
3.2. CASA for the calculations of NPP

In the past few years, a wide range of models has been devel-
oped to evaluate the NPP (Potter et al., 1993; Sitch et al., 2003; Sato
et al., 2007). Among these models, the CASA, one of the satellite-
based models (Cramer et al., 1999), has been widely employed in
evaluating the terrestrial NPP in United States (Lobell et al., 2002),
in China (Piao et al., 2005), as well as at a global scale (Potter et al.,
1993).

The CASA model requires the parameters of NDVI, temperature,
precipitation, solar radiation and so on. In this model, NPP was
calculated as the product of the amount of photosynthetically
active radiation (PAR) absorbed by green vegetation (APAR) and the
light use efficiency ( 3) that the radiation is converted to plant
biomass increment:

NPPðx; tÞ ¼ APAR � 3 (13)

where NPP(x,t) is the net primary productivity fixed by vegetation
at a grid cell x in month t, and APAR is the amount of photosynthetic
active radiation. APAR is calculated by using the data on solar
surface irradiance (S) and the fraction of photosynthetic active
radiation absorbed by green vegetation (FPAR). 3for each grid cell
can be determined as the product of 3max, and scalars representing
the availability of soil moisture (W) and the suitability of temper-
ature (T1,T2). Thus, the NPP in location x and time t becomes:

NPPðx; tÞ ¼ Sðx; tÞ � FPAR � 0:5� 3
* � T1ðx; tÞ � T2ðx; tÞ

�Wðx; tÞ (14)

where the factor 0.5 accounts for the fact that approximately half of
the incoming solar radiation is in the photosynthetic active radia-
tion waveband (0.4e0.7 mm). FPAR is defined as a linear function of
the NDVI simple ratio. 3max is determined by a calibrationwith field
data from Luo’s (1996) study. The details of the CASA model can be
found in the studies by Potter et al. (1993).
3.3. Standardized anomaly index for NPP (SAIeNPP) for
representing NPP anomalies

Standardized Anomaly Index (SAI), which was developed by
Katz and Glantz (1986), was widely employed for evaluating the
trends of precipitation (Hereford et al., 2002; Robertson et al.,
2009; Nigrelli and Collimedaglia, 2012). This index was also
applied effectively to the measurement of the anomalies of
temperature (Giuffrida and Conte, 1989), NDVI (Peters et al.,
2002) and snow cover (Valt and Cianfarra, 2010). For investi-
gating NPP anomalies, we attempt to extend the SAI by taking
China as a case study. Generally, the variance tends to increase as
the mean NPP increases. Similarly, regions with high mean NPP
values imply large NPP variances. In regions with high NPP
gradients, there will be also high gradients in NPP variances.
Considering the large gradients in NPP means and variances,
regions with low NPP should receive higher weights for their
comparability in different regions when reconstructing NPP
anomalies. Thus, we assessed the NPP anomalies with SAIeNPP,
which is defined as:
SAINPP ¼ NPPðiÞ �NPP
(15)
sNPP

where SAINPP is the NPP anomalies, namely SAIeNPP. NPP(i) is the
amount of NPP in the year i; NPP is the mean value of the NPP, and
sNPP is the standard deviation of the NPP.
3.4. Assessing the impacts of droughts on NPP

3.4.1. Area-weighted drought intensity for the characterizations of
droughts

While identifying the droughts, monthly SPI was calculated at
different time scales (1, 3, 6, 9 and 12 months) based on the 31-year
precipitation data (1980e2010) across China. After that, average SPI
in the growing season (May to September) was computed as the
annual SPI. The SPI corresponding to various land covers was then
extracted based on the annual SPI by using GIS based on the
distribution of several land covers (e.g. forest, shrubland, grassland,
cropland, urban area and the sparse vegetation) in China.

For better measuring the deficits of precipitation, we inves-
tigated only drought-affected areas. In this paper, the drought-
affected areas refer to those with a deficiency of precipitation,
which was calculated as SPI < 0. Area-weighted drought inten-
sity (AWDI), which represents the average severity of a drought
in a region, was calculated by multiplying the SPI by the
proportion of drought-affected areas in the total areas for each
land covers in China. These calculations were implemented in the
following way: (1) the drought-affected areas for various land
covers were extracted based on the SPI and spatial distributions
of several land covers in China; (2) average SPI was calculated to
represent the mean drought intensity of each land cover; and (3)
AWDI was calculated as a product of this average SPI and the
proportion of drought-affected areas in the total areas of
a certain land cover.

3.4.2. Representing NPP anomalies with SAIeNPP
Firstly, monthly NPP across China was modeled by using the

CASAmodel. We then obtained annual NPP through the summation
of the monthly values. The NPP anomalies was calculated with Eq.
(15) based on the annual NPP from 2001 to 2010.

3.4.3. Evaluating the impacts of droughts on NPP
For exploring the relationships between drought severity and

NPP, the SAIeNPP for various land covers was calculated separately
based on the land covers data in China as well. Pearson correlation
analysis was conducted between SAIeNPP and SPI at the time
scales of 1, 3, 6, 9 and 12 months. Temporal dynamics of AWDI and
the correlation coefficients Rwere then investigated at these scales
as well. In addition, we analyzed the year-to-year variability of the
SAIeNPP and the anomalies of some factors including droughts,
NDVI, radiation, temperature.
4. Results

4.1. Validation of NPP and SAIeNPP

4.1.1. Validation of NPP
In this study, the distributions of NPP in China were modeled by

using the CASAmodel. For verifying the reliability of the application
of this model, we validated the model results based on Luo’s (1996)
investigation data and other literature. The plot sites that have the
same vegetation types as the vegetation map were selected from
Luo’s (1996) investigation data. A significant correlation is found
between our simulated NPP and observationebased data



Fig. 1. Interannual variations of the SPI (wine squares) in China from 2001 to 2010.
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(r ¼ 0.733, P < 0.001, n ¼ 248). In addition, a comparison was
conducted between our estimated NPP and other published
summaries of NPP studies. According to our study, average annual
NPP in China is 2.54 Pg C (1 Pg C ¼ 1015 g C). This is within the
reported values of 1.95e6.13 Pg C (Piao, 2001; Chen et al., 2001;
Feng et al., 2007; Zhu et al., 2007). These indicate that the CASA is
applicable to the modeling of the NPP across China.

4.1.2. Validation of SAIeNPP
Vegetation Health Index (VHI), which was developed by Kogan

et al. (2004), provides combined characterizations of both mois-
ture and thermal conditions while representing the vegetation
health. It proved to be effective in monitoring the vegetation
conditions (Kogan et al., 2011). Thus, we validated the SAIeNPP by
performing correlation analysis between the SAIeNPP and the VHI
Fig. 2. Spatial distribution of the dro
based on time series of VHI data from 2001 to 2010. A significant
correlation is noted between the SAIeNPP and the VHI (r ¼ 0.717,
P ¼ 0.020, n ¼ 10). This indicates the suitability of the SAIeNPP for
representing the NPP anomalies in China.
4.2. Identification of the regional droughts in China

Since nearly half of the regions in China are located in monsoon
climate zones, the water and heat energy is unevenly distributed in
time and space. In the past decade (2001e2010), China witnessed
several drought events, with different intensities and areal extents.
In this paper, the obvious droughts that occurred in the years 2001,
2006 and 2009 were reconstructed by using SPI at the time scale of
three months (Fig. 1). This is in accordance with the findings of
Wang et al. (2011a,b) and Wu et al. (2011). The identification of
these droughts indicates that SPI can be applied to the monitoring
the droughts in China effectively.

As shown in Figs. 1 and 2, one of the most severe droughts
during a 10-year period (2001e2010), which was caused by the
persistent anomalous circulation over the Eurasia (Wei et al.,
2004), occurred in the Northern China in 2001. During this
drought period, the total drought-affected areas reached 6.46
million km2, or 68% of land areas of the entire country. More
concretely, severe/extreme drought areas covered approximately
0.74 million km2, in comparison with the mild drought area of
5.72 million km2 (approximately 7.84% and 60% of land areas of
the entire country, respectively). In addition, the drought-
affected areas covered approximately 7.02 million km2 in 2009
(Figs. 1 and 4), accounting for about 74% of total land areas in
China, which is larger than that in 2001. However, the severe/
extreme drought areas were low, approximately 0.21 million
km2, and accounting for nearly 28% of that in 2001. In terms of
drought intensity, the area-averaged SPI over China reached
a value of �0.32 in 2001, which is also smaller than that in 2009
(approximately �0.25). All these indicate the occurrence of an
extremely severe drought in 2001.
ught severity in China in 2001.



Fig. 3. The same as Fig. 2, but for the year 2006.
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In 2006, the drought intensity was less serious than that in 2001
and 2009 (Fig. 1), with severe/extreme drought area of 0.05 million
km2. However, the mild drought areas reached 6.40 million km2,
which is comparable to that in the years 2001 and 2009. In addition,
drought intensity in this year was found to beweak as well, with an
averaged SPI value of �0.1. As to the spatial distribution, the
drought in 2006, which caused a shortage of drinking water and
affected the lives of more than 21 million people (Hao et al., 2007),
mainly occurred around the regions of Chongqing-Sichuan area
(Fig. 3).

4.3. Analyses of the impacts of droughts on NPP

For exploring the drought effects on NPP, the droughts in 2001
and 2009 were further investigated by performing several statis-
tical analyses. Temporal variations of correlation coefficients R
between the average SPI in the growing season and the annual SAIe
NPP, as well as the AWDI were examined at time scales of 1, 3, 6, 9
and 12 months for this two years. In addition, NDVI and water
supplying vegetation index (WSVI) proved to be good indicators of
vegetation’s ability (Xiao et al., 1995; Wang et al., 2003), and hence
can regulate the carbon cycle, especially NPP (Imhoff et al., 2000).
Table 2
Variations of the correlation coefficients R and AWDI at different time scales in 2001 (nfore
nsparsevegetation ¼ 83678, P < 0.0001).

Land cover type 1 Month 3 Months

R AWDI R AWDI

Forest 0.26 �0.30 0.31 �0.38
Shrubland 0.20 �0.28 0.25 �0.38
Grassland 0.35 �0.21 0.40 �0.37
Cropland 0.32 �0.44 0.40 �0.63
Urban area 0.21 �0.44 0.27 �0.58
SparseVeg 0.20 �0.24 0.21 �0.60

R represents the correlation between the average SPI in the growing season and the ann
AWDI represents the average severity of a drought in a region.
Nvegtype is the amount of the cells when calculating R for various vegetation types.
For validating our results, a comparison was made between our
calculated correlation coefficients R and the correlations of other
studies based on NDVI/WSVI. The correlation between NDVI and
the SPI often fluctuates at different time scales. There are some-
times strong correlations between these two factors. However, in
some cases, the correlation coefficients are even less than zero (Ji
and Peters, 2003). Additionally, the correlation coefficients
between SPI and WSVI vary between 0.022 and 0.697 (Jain et al.,
2010). As shown in Tables 2 and 3, our estimated correlation
coefficients R, which range from 0.05 to 0.44, are all within the
reported values. This indicates the reliability of our results.

As to the drought intensity, various land covers suffered from
a serious drought in China in 2001, with the minimal AWDI value of
�0.77 at the time scale of six months (Table 2 and Fig. 2). In addi-
tion, the AWDI exerts continuous increases from the time scale of
twelve months. It peaks at the time scale of six months for all the
land covers, and then drops to low values at time scale of one
month accounting for the precipitation deficits of the present
month. These apparent trends of AWDI indicate the temporal
variability of drought intensity in this country.

The drought in China in 2001 exerted remarkable effects on NPP
as well. Significant positive correlations between SPI and SAIeNPP
st ¼ 66082, nshrubland ¼ 38559, ngrassland¼ 117444, ncropland ¼ 74384, nurbanarea ¼ 1675,

6 Months 9 Months 12 Months

R AWDI R AWDI R AWDI

0.27 �0.43 0.28 �0.33 0.33 �0.29
0.24 �0.43 0.26 �0.34 0.28 �0.28
0.38 �0.44 0.39 �0.42 0.40 �0.42
0.39 �0.70 0.39 �0.51 0.34 �0.39
0.26 �0.62 0.27 �0.41 0.25 �0.32
0.21 �0.77 0.23 �0.77 0.22 �0.66

ual SAIeNPP.



Table 3
Variations of the correlation coefficients R and AWDI at different time scales in 2009 (nforest¼ 66082, nshrubland ¼ 38559, ngrassland¼ 117444, ncropland ¼ 74384, nurbanarea ¼ 1675,
nsparsevegetation ¼ 83678, P < 0.0001).

Land cover type 1 Month 3 Months 6 Months 9 Months 12 Months

R AWDI R AWDI R AWDI R AWDI R AWDI

Forest 0.05 �0.20 0.08 �0.23 0.15 �0.30 0.15 �0.30 0.06 �0.29
Shrubland 0.07 �0.24 0.10 �0.27 0.07 �0.33 0.11 �0.29 0.09 �0.23
Grassland 0.40 �0.20 0.42 �0.32 0.31 �0.38 0.39 �0.36 0.44 �0.26
Cropland 0.34 �0.20 0.28 �0.22 0.18 �0.24 0.18 �0.24 0.17 �0.22
Urban area 0.17 �0.14 0.15 �0.16 0.10 �0.19 0.10 �0.21 0.12 �0.18
Sparse Veg 0.11 �0.19 0.14 �0.61 0.10 �0.70 0.14 �0.65 0.20 �0.50

Refer to Table 2 for the abbreviations details.
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can be noted for all land covers (Table 3). The trends of these
correlation coefficients R along with AWDI at different time scales
are obvious in this year. That is, after the drought intensity (AWDI)
peaks at the time scale of six months, the correlations achieve their
maximum at the time scale of three months. This is available for
most of the land covers, except for the sparse vegetation (six
months) (Table 2).

As the indicator of droughts for various land covers, most of the
AWDI values in 2009 are larger than that in 2001 (Tables 2 and 3),
implying relatively low drought stresses in this period. The corre-
lation coefficients R are smaller than that of the values in 2001, with
a maximum of 0.42 for grassland at the time scale of three months.
The drought intensity AWDI exhibits an obvious trend at different
time scales as well. The drought in 2009, which is represented as
AWDI, peaked at the time scales of six and nine months. This can be
explained by the cumulative effects of precipitation deficits.

What’s more, temporal trends of the combination of AWDI and
correlation coefficients R along with the time scale are apparent for
various land covers in 2009. Maximal R can be found after AWDI
reaches their peak values (Table 3). More concretely, R peaks at the
time scale of one month for cropland just after AWDI attains its
maximum at the time scale of six months. Similar results can be
found for the other land cover types. Similar to that in 2001, this can
be attributed to the cumulative and lag effects of vegetation
Fig. 4. The same as Fig. 2,
responses to the deficits of precipitation. Evidence can also be
found in the findings of Ji and Peters (2003). This finding is crucial
while monitoring the effects of droughts on NPP by using SPI.

Besides the temporal changes of the droughts itself and the
relationships R between NPP anomalies and SPI, interannual vari-
ability of the NPP were investigated as well. During the past decade
(2001e2010), the NPP over China exhibited an increase, from
2.25 Pg C in 2001 to 2.44 Pg C in 2010, with an average rate of 0.90%
each year. As shown in Fig. 5, the NPP in Chinawas anomalously low
in 2001. The reduced NPP in 2001 could be associated with the
cumulative effects of the serious drought that occurred during the
period 1999e2002 (Wu et al., 2011).

As shown in Figs. 3 and 6, the drought in 2006 was mildness-
dominated, with the mild drought-affected area of 6.35 million
km2, accounting for 67.07% of the land areas in the entire country.
However, the annual NPP exhibited a slight increase as the drought
occurred (Fig. 6). This indicates that mild droughts did not exhibit
substantial limited effects on NPP. This kind of drought may even
increase the plant growth in humid regions as fewer cloudiness
which caused by droughts increases the incoming PAR (Xiao et al.,
2009). In addition, the varied radiation and warm temperature can
contribute to the increase in NPP as well.

Relatively high NPP (2.62 Pg C) can be found in 2009, despite an
occurrence of a serious drought in this period (Figs. 1 and 4). This
but for the year 2009.



Fig. 5. Interannual variations of NPP (olive spheres) and drought areas (SPI < �1)
(wine squares) in China from 2001 to 2010.

Fig. 7. Interannual variations from 2001 to 2010 in the anomalies of annual NPP (olive
spheres), NDVI (green squares), radiation (yellow triangles) and temperature (red
stars). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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phenomenon can be explained by the widespread distributions of
mild drought areas (approximately 6.81million km2, accounting for
71.89% of the total land areas in China) and less severe/extreme
drought areas (approximately 0.21 million km2) (Figs. 5 and 6).

Temporal changes of NPP and droughts were also explored by
performing a correlation analysis between NPP anomalies and the
droughts expressed as SPI. As to the drought intensity, SPI values
from �0.99 to 0.99 represent the near-normal conditions in rela-
tion to photosynthesis for vegetation (Table 1). Thus, we examined
only the drought areas that SPI<�1 instead. As shown in Fig. 5, this
drought area (SPI < �1) revealed a slight fluctuation from 2001 to
2010. Additionally, considerable year-to-year variability between
NPP and the drought area (SPI < �1) are noted. The temporal
variations of NPP are negatively correlated with the drought area
that SPI<�1 (r¼�0.842, P¼ 0.002, n¼ 10). This indicates that the
serious droughts (SPI < �1) reduced the terrestrial NPP, whereas
mild droughts (�1 < SPI < 0) did not exhibit an obvious effect of
reduction of the countrywide NPP. Particularly, the mild droughts
could even increase NPP slightly in humid conditions by increasing
the incoming PAR. This phenomenon was mainly associated with
the drought intensity, drought duration and drought-affected areas.
In addition to the drought conditions, the variability of NPP was
Fig. 6. The same as Fig. 5, but for 0 < SPI < �1.
probably caused by the combined effects of temperature, precipi-
tation, radiation and so on. Thus, we further explored the inter-
annual variability of the NPP and its relationships with the other
climatic factors, including NDVI, radiation and temperature.

As shown in Fig. 7, the NPP in China increased slightly during the
past decade (2001e2010). Interannual variations of NPP anomalies
are correlated positively with the mean NDVI anomaly (r ¼ 0.838,
P¼ 0.002, n¼ 10). Although the radiation in 2001 was much higher
than that in other years (Fig. 7), the NPP was lower in this period.
This may be associating with the deficits of precipitation (Fig. 3).
Thus, droughts, NDVI and radiation could be the crucial drivers of
the temporal dynamics of NPP anomalies. In addition, the mean
temperature rose slightly during this period (Fig. 7). However, the
correlation between temperature and NPP anomalies is not
significant (r ¼ 0.412, P ¼ 0.237, n ¼ 10). This result coincides well
with the results of Piao (2001).
5. Conclusions

In this article, the droughts in the years 2001, 2006 and 2009
were well reconstructed, indicating that SPI is suitable to monitor
the droughts in China during the past decade (2001e2010). In
addition, standardized anomaly index (SAI) was extended as SAIe
NPP to represent the NPP anomalies effectively. According to our
analysis to several droughts at multiple time scales, the time scale
of SPI exhibiting the best correlations with NPP anomalies was not
uniform for various vegetation types at anytime and anywhere. For
instance, in 2001, the area-weighted drought intensity (AWDI) at
the time scale of three months was found to have the best corre-
lations with NPP anomalies for most of the land covers in China,
except for the sparse vegetation (six months). However, for the year
2009, these high correlations could be obtained at times scales of
one, three or six months. These correlations could be associated
with the regional differentiation of drought intensity, drought
duration and vegetation types. In addition, the strongest correla-
tions between drought intensity and NPP anomalies could be found
during or after the drought intensities reached their peak values.
This can be explained by the cumulative and lag effects of vegeta-
tion responses to the deficits of precipitation. The findings are
a crucial supplement to determine the time scale of SPI that
correlated best with NPP anomalieswhilemonitoring NPP. As to the
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interannual variations, the NPP was anomalously low in 2001. This
can be caused by the severe droughts in this year. Conversely, the
NPP exhibited a slight increase as the mildness-dominated
droughts occurred in 2006. This phenomenon implies that some
droughts substantially reduced the countrywide NPP, whereas the
others not. This uncertainty of the impacts on NPP was primarily
associated with drought intensity, drought duration, drought-
affected areas, as well as the cumulative and lag effects of the
vegetation responses to the deficits of precipitation. In addition,
NDVI, radiation and temperature could exert important influences
as well. These findings should be significant for the monitoring of
NPP anomalies associated with droughts while representing the
droughts as SPI.

This article explored the NPP anomalies that were associated
with droughts in China during the past decade by using SAIeNPP
and SPI. The NPP responses in this analysis may help to clarify
the impacts of droughts from other factors in the global carbon
cycle, including climate change, deforestation and wildfire.
However, a single factor cannot account for such complicated
trends of the NPP anomalies, which are probably affected by the
joint effects of various factors, such as temperature and precipita-
tion. This paper does not investigate the combined contributions of
these factors. Further studies are essential to quantify the influ-
ences of various factors (e.g. climate conditions, land covers and
site-based factors) on NPP anomalies separately.
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